Что то часто мне стали задавать вопросы по аналоговой электронике. Никак сессия студентов за яцы взяла? ,) Ладно, давно пора двинуть небольшой ликбезик. В частности по работе операционных усилителей. Что это, с чем это едят и как это обсчитывать.
Что это
Операционный усилитель это усилок с двумя входами, невье гхм большим коэфициентом усиления сигнала и одним выходом. Т.е. у нас Uвых= K*Uвх а К в идеале равно бесконечности. На практике, конечно, там числа поскромней. Скажем 1000000. Но даже такие числа взрывают мозг при попытке их применить напрямую. Поэтому, как в детском саду, одна елочка, две, три, много елочек у нас тут много усиления ,) И баста.
А входа два. И один из них прямой, а другой инверсный.
Более того, входы высокоомные. Т.е. их входное сопротивление равно бесконечности в идеальном случае и ОЧЕНЬ много в реальном. Счет там идет на сотни МегаОм, а то и на гигаомы. Т.е. оно замеряет напряжение на входе, но на него влияет минимально. И можно считать, что ток в ОУ не течет.
Напряжение на выходе в таком случае обсчитывается как:
Uout=(U2-U1)*K
Очевидно, что если на прямом входе напряжение больше чем на инверсном, то на выходе плюс бесконечность. А в обратном случае будет минус бесконечность.
Разумеется в реальной схеме плюс и минус бесконечности не будет, а их замещать будет максимально высокое и максимально низкое напряжение питания усилителя. И у нас получится:
Компаратор
Устройство позволяющее сравнивать два аналоговых сигнала и выносить вердикт какой из сигналов больше. Уже интересно. Применений ему можно придумать массу. Кстати, тот же компаратор встроен в большую часть микроконтроллеров и как им пользоваться я показывал на примере AVR в статьях про использование аналогового компаратора и про создание на его базе АЦП. Также компаратор замечательно используется для создания всяких ШИМ сигналов.
Но одним компаратором дело не ограничивается, ведь если ввести обратную связь, то из ОУ можно сделать очень многое.
Обратная связь
Если мы сигнал возьмем со выхода и отправим прямиком на вход, то возникнет обратная связь.
Положительная обратная связь
Возьмем и загоним в прямой вход сигнал сразу с выхода.
Что получим? А ничего интересного, процесс пойдет по следующей цепочке событий.
Uout = (0 U1)*К = К*U1
Uout = (-K*U1 U1)*K1
В общем, выход мгновенно свалится в бесконечные минуса, а в реале ляжет на шину отрицательного питания и усе. Поэтому такое включение применяется крайне редко. Например в триггере Шмитта для обеспечения гистерезиса.
Триггер Шмитта
Представим себе компаратор включенный по такой вот схеме и запитанный от +/- 15 вольт:
- Напряжение U1 больше нуля на выходе -15 вольт
- Напряжение U1 меньше нуля на выходе +15 вольт
А что будет если напряжение будет равно нулю? По идее на выходе должен быть ноль. Но в реальности напряжение НИКОГДА не будет равно нулю. Ведь даже если на один электрон заряд правого перевесит заряд левого, то уже этого достаточно, чтобы на бесконечном усилении вкатить потенциал на выход. И на выходе начнется форменный ад скачки сигнала то туда, то сюда со скоростью случайных возмущений, наводящихся на входы компаратора.
Для решения этой проблемы вводят гистерезис. Т.е. своего рода зазор между переключениями из одного состояния в другое. Для этого вводят положительную обратную связь, вот так:
Считаем, что на инверсном входе в этот момент +10 вольт. На выходе с ОУ минус 15 вольт. На прямом входе уже не ноль, а небольшая часть выходного напряжения с делителя. Примерно -1.4 вольта Теперь, пока напряжение на инверсном входе не снизится ниже -1.4 вольта выход ОУ не сменит своего напряжения. А как только напряжение станет ниже -1.4, то выход ОУ резко перебросится в +15 и на прямом входе будет уже смещение в +1.4 вольта.
И для того, чтобы сменить напряжение на выходе компаратора сигналу U1 надо будет увеличиться на целых 2.8 вольта, чтобы добраться до верхней планки в +1.4.
Возникает своеобразный зазор где нет чувствительности, между 1.4 и -1.4 вольтами. Ширина зазора регулируется соотношениями резисторов в R1 и R2. Пороговое напряжение высчитывается как Uout/(R1+R2) * R1 Скажем 1 к 100 даст уже +/-0.14 вольт.
Но все же ОУ чаще используют в режиме с отрицательной обратной связью.
Отрицательная обратная связь
Окей, воткнем по другому:
В случае отрицательной обратной связи у ОУ появляется интересное свойство. Он всегда будет пытаться так подогнать свое выходное напряжение, чтобы напряжения на входах были равны, в результате давая нулевую разность.
Пока я в великой книге от товарищей Хоровица и Хилла это не прочитал никак не мог вьехать в работу ОУ. А оказалось все просто.
Повторитель
И получился у нас повторитель. Т.е. на входе U1, на инверсном входе Uout = U1. Ну и получается, что Uout = U1.
Спрашивается нафига нам такое счастье? Можно же было напрямую кинуть провод и не нужен будет никакой ОУ!
Можно, но далеко не всегда. Представим себе такую ситуацию, есть датчик выполненный в виде резистивного делителя:
Нижнее сопротивление меняет свое значение, меняется расклад напряжений выхода с делителя. А нам надо снять с него показания вольтметром. Но у вольтметра есть свое внутреннее сопротивление, пусть большое, но оно будет менять показания с датчика. Более того, если мы не хотим вольтметр, а хотим чтобы лампочка меняла яркость? Лампочку то сюда никак не подключить уже! Поэтому выход буфферизируем операционным усилителем. Его то входное сопротивление огромно и влиять он будет минимально, а выход может обеспечить вполне ощутимый ток (десятки миллиампер, а то и сотни), чего вполне хватит для работы лампочки.
В общем, применений для повторителя найти можно. Особенно в прецезионных аналоговых схемах. Или там где схемотехника одного каскада может влиять на работу другого, чтобы разделить их.
Усилитель
А теперь сделаем финт ушами возьмем нашу обратную связь и через делитель напряжения подсадим на землю:
Теперь на инверсный вход подается половина выходного напряжения. А усилителю то по прежнему надо уравнять напряжения на своих входах. Что ему придется сделать? Правильно поднять напряжение на своем выходе вдвое выше прежнего, чтобы компенсировать возникший делитель.
Теперь будет U1 на прямом. На инверсном Uout/2 = U1 или Uout = 2*U1.
Поставим делитель с другим соотношением ситуация изменится в том же ключе. Чтобы тебе не вертеть в уме формулу делителя напряжения я ее сразу и дам:
Uout = U1*(1+R1/R2)
Мнемонически запоминается что на что делится очень просто:
Таким образом, можно очень легко умножать аналоговые значения на числа больше 1. А как быть с числами меньше единицы?
Инвертирующий усилитель
Тут поможет только инверсный усилитель. Разница лишь в том, что мы берем и прямой вход коротим на землю.
При этом получается, что входной сигнал идет по цепи резисторов R2, R1 в Uout. При этом прямой вход усилителя засажен на нуль. Вспоминаем повадки ОУ он постарается любыми правдами и неправдами сделать так, чтобы на его инверсном входе образовалось напряжение равное прямому входу. Т.е. нуль. Единственный вариант это сделать опустить выходное напряжение ниже нуля настолько, чтобы в точке 1 возник нуль.
Итак. Представим, что Uout=0. Пока равно нулю. А напряжение на входе, например, 10 вольт относительно Uout. Делитель из R1 и R2 поделит его пополам. Таким образом, в точке 1 пять вольт.
Пять вольт не равно нулю и ОУ опускает свой выход до тех пор, пока в точке 1 не будет нуля. Для этого на выходе должно стать (-10) вольт. При этом относительно входа разность будет 20 вольт, а делитель обеспечит нам ровно 0 в точке 1. Получили инвертор.
Но можно же и другие резисторы подобрать, чтобы наш делитель выдавал другие коэффициенты!
В общем, формула коэффициента усиления для такого усилка будет следующей:
Uout = Uin * R1/R2
Ну и мнемоническая картинка для быстрого запоминания ху из ху.
Вычитающая схема
Однако никто же не мешает подать на прямой вход не ноль, а любое другое напряжение. И тогда усилитель будет пытаться приравнять свой инверсный вход уже к нему. Получается вычитающая схема:
Допустим U2 и U1 будет по 10 вольт. Тогда на 2й точке будет 5 вольт. А выход должен будет стать таким, чтобы на 1й точке стало тоже 5 вольт. То есть нулем. Вот и получается, что 10 вольт минус 10 вольт равняется нуль. Все верно 🙂
Если U1 станет 20 вольт, то выход должен будет опуститься до -10 вольт.
Сами посчитайте разница между U1 и Uout станет 30 вольт. Ток через резистор R4 будет при этом (U1-Uout)/(R3+R4) = 30/20000 = 0.0015А, а падение напряжения на резисторе R4 составит R4*I4 = 10000*0.0015 = 15 вольт. Вычтем падение в 15 вольт из входных 20 и получим 5 вольт.
Таким образом, наш ОУ прорешал арифметическую задачку из 10 вычел 20, получив -10 вольт.
Более того, в задачке есть коэффициенты, определяемые резисторами. Просто у меня, для простоты, резисторы выбраны одинакового номинала и поэтому все коэффициенты равны единице. А на самом деле, если взять произвольные резисторы, то зависимость выхода от входа будет такой:
Uout = U2*K2 U1*K1
K2 = ((R3+R4) * R6 ) / (R6+R5)*R4
K1 = R3/R4
Мнемотехника для запоминания формулы расчета коэффициентов такова:
Прям по схеме. Числитель у дроби вверху поэтому складываем верхние резисторы в цепи протекания тока и множим на нижний. Знаменатель внизу, поэтому складываем нижние резисторы и множим на верхний.
Если же вводные резисторы (R4 и R5) равны друг другу. И резистор обратной связи и резистор на землю (R3 и R6) тоже равны друг другу. То формула упрощается до
Uout = R3/R4 (U2 U1).
Таким образом, на одном усилке можно два сигнала сначала вычесть, а потом умножить на константу. Этим, кстати, я воспользовался в схеме реобаса, чтобы привести милливольтный сигнал с датчика температуры к вменяемому виду.
Раз можно вычитать, то можно и суммировать
Сумматор инвертирующий
Тут все просто. Т.к. точка 1 у нас постоянно приводится к 0, то можно считать, что втекающие в нее токи всегда равны U/R, а входящие в узел номер 1 токи суммируются. Соотношение входного резистора и резистора в обратной связи определяет вес входящего тока.
Ветвей может быть сколько угодно, я же нарисовал всего две.
Uout = -1(R3*U1/R1 + R3*U2/R2)
Резисторы на входе (R1, R2) определяют величину тока, а значит общий вес входящего сигнала. Если сделать все резисторы равными, как у меня, то вес будет одинаковым, а коэффициент умножения каждого слагаемого будет равен 1. И Uout = -1(U1+U2)
Сумматор неинвертирующий
Тут все чуток посложней, но похоже.
Uout = U1*K1 + U2*K2
K1 = R5/R1
K2 = R5/R2
Причем резисторы в обратной связи должны быть такими, чтобы соблюдалось уравнение R3/R4 = K1+K2
В общем, на операционных усилителях можно творить любую математку, складывать, умножать, делить, считать производные и интегралы. Причем практически мгновенно. На ОУ делают аналоговые вычислительные машины. Одну такую я даже видел на пятом этаже ЮУрГУ дура размером в пол комнаты. Несколько металлических шкафов. Программа набирается соединением разных блоков проводочками 🙂
Продолжение следует, когда-нибудь 🙂
Оцените статью!