DI HALT:
Признаюсь, что я этот программатор никогда не собирал, т.к. у меня с первого раза заработала и никогда не подводила схема Громова. Однако, судя по многочисленным комментариям, эта схема работает далеко не у всех и тут не все гладко. Даже если есть COM порт, то не факт что он захочет правильно работать в таком режиме. Многое зависит и от операционки, и от тактовой частоты проца. В общем, грабель там закопано много. Но есть еще варианты относительно простой прошивки микроконтроллеров AVR это программатор на LPT, аналог STK500/300. В своей простейшей модификации пять проводков не требует вообще ничего, даже резисторов. Соединяешь все напрямую и шьешь. Правда пожечь LPT порт тут проще простого. C токоограничитльными резисторами все безопасней, однако и это не спасает. Помогает установка буфферной микросхемы 74HC244.
И получаем STK200! Достоинства этой схемы в том, что это классика жанра. Ее поддерживают по моему вообще все прошивающие программы и оболочки. В том числе и разные среды разработки вроде CVAVR. Надежная и простая, как кувалда, схема. Недостаток один нужен LPT порт, который ныне редкость.
Но что мешает под свои радиоопыты завести древнюю машинку уровня PIII-500 которую можно собрать из хлама за пиво? И работать будет все отлично и пожечь не жалко. Ну, а вдоволь наигравшись с STK и поняв премудрости процесса прошивки в деталях, можно собрать и USB программатор. А тут Михаил (Code007) написал отличную статью по сборке этого девайса. Грех не выложить.
В настоящее время микроконтроллеры AVR фирмы ATMEL получили весьма широкое распространение. Это обусловлено небольшой стоимостью, развитой периферией, доступностью и удобством средств разработки. Несомненным достоинством процессоров этой серии является возможность внутрисхемного программирования с использованием интерфейса SPI.
Для начала работы с этими микроконтроллерами необходимо обзавестись какими либо средствами осуществляющими внутрисхемное программирование. Существует достаточно большое количество различных конструкций программаторов, но на первоначальном этапе вполне подойдет адаптер STK200/300. В данной статье я попытаюсь подробно описать процесс сборки этого адаптера. Причем настоятельно рекомендую повторить конструкцию именно так, как описано, а не на куске макетной платы. Рекомендация вытекает из шести летнего использования адаптера собранного на чем попало.
Адаптер получил свое название от комплектующихся им отладочных плат фирмы ATMEL для быстрого начала работы с микроконтроллерами AT90S8515 и ATmega103 соответственно. На самом деле приведенная схема соответствует одновременно обоим адаптерам, в ней присутствуют перемычки для определения наличия как адаптера STK200 (выводы 2-12 разъема X1), так и STK300 (выводы 3-11).
![]() |
Рисунок 1. Электрическая принципиальная схема адаптера STK200/300
Для изготовления адаптера нам потребуется разъем DB25М (LPT-папа) с пластиковым корпусом, десятижильный плоский кабель длиной около 2 метров, разъем IDC-10, стеклотекстолит, детали по схеме и немного терпения.
![]() |
Рисунок 2. Основные комплектующие (разъем IDC-10 обжат на кабеле)
Все детали монтируются на односторонней печатной плате. Разводка платы осуществлена не на 100%, поэтому часть проводников выполнена навесным монтажом. Такое решение было принято в связи с тем, что изготовление двухсторонней платы более трудоемко и в данной ситуации не имеет особого смысла. Плата изготавливается по всем известной лазерно-утюжной технологии.
Коротко напомню ее основные шаги.
На глянцевой бумаге с помощью лазерного принтера печатается чертеж печатной платы. В качестве бумаги подойдут листы из рекламного буклета или чего то подобного. Я использовал рекламную книгу о средствах автоматизации фирмы Siemens. Поверхность медной фольги текстолита зачищается мелкой наждачной бумагой и протирается ватным тампоном, при этом надо проследить что бы на поверхности не осталось волокон ваты. После чего следует приглаживание рисунка утюгом к фольге. Вот здесь добавлю свои замечания по этой важной процедуре. Для увеличения качества изготавливаемых плат и снижения количества брака, а также облегчения работы я использую не хитрое приспособление показанное на рисунке. Пояснять конструкцию думаю нет необходимости.
![]() |
Рисунок 3. Приспособление для переноса рисунка печатной платы зажим.
Заготовка печатной платы вместе с распечатанным чертежом проводников зажимается между двумя металлическими пластинами через дополнительные прокладки из мягкого термостойкого материала ( я использую ткань сложенную в несколько слоев). На получившийся пакет ставим утюг и включаем в сеть. Ждем минут пять и снимаем утюг. После чего даем пакету остыть. Вынимаем заготовку платы с уже “мертво” прилипшей распечаткой чертежа и опускаем в теплую воду для дальнейшего удаления бумаги. Удалив бумагу и протравив фольгу у вас должно получиться нечто подобное тому, что показано на рисунке.
![]() |
Рисунок 4. Плата после травления
Далее необходимо удалить тонер. Я обычно для этого использую ацетон. Берем ватный тампон, смачиваем ацетоном и стираем тонер. Результат показан на рисунке. В принципе можно остановиться на этом, но мы будем лудить.
![]() |
Рисунок 5. Тонер смыт
Для лужения используется следующий метод. Берем небольшую кастрюльку, наливаем немного воды, растворяем в воде лимонную кислоту ( сильно много сыпать не надо, так что бы была кислой) и кипятим. Когда вода закипит опускаем печатную плату, если лимонной кислоты было достаточно, то медь немного изменит цвет. Бросаем кусочек сплава Розе и ждем пока он расплавиться, после чего держа пинцетом ватный тампон равномерно наносим сплав по поверхности платы. Эта операция естественно проводится в кипящей воде. Должно получиться как на рисунке.
![]() |
Рисунок 6. После лужения сплавом Розе
Далее вооружившись ножницами по металлу обрезаем лишнее по контуру и дорабатываем напильником.
![]() |
Рисунок 7. Печатная плата готова
Подробности технологии лазерно утюжного метода (ЛУТ) можно найти в разделе Радиолюбительские технологии в статьях:
Создание печатной платы методом лазерного утюга
и
Изготовление печатной платы от и до. Видео урок.
Все, можно брать в руки паяльник и распаивать детали в соответствии с монтажной схемой.
![]() |
Рисунок 8. После распайки пассивных компонентов (светодиоды и микросхема не установлены)
Далее припаиваются светодиоды и дорабатывается верхняя крышка разъема. Суть доработки заключается в сверлении двух отверстий под светодиоды. Как должно получиться можно посмотреть на рисунке.
![]() |
Рисунок 9. Доработка верхней крышки разъема
Поле этого можно припаивать микросхему 74HC244. С помощью многожильного или одножильного монтажного провода не большого сечения ( я использовал провод во фторопластовой изоляции МГТФ) припаиваем перемычки в соответствии с принципиальной схемой. Не забываем припаять перемычку с любого контакта из диапазона 18-25 на корпус разъема и с корпуса на общий проводник печатной платы, но уже со стороны монтажа. Для пояснения и наглядности привожу рисунок того, что должно получиться.
![]() |
Рисунок 10. Монтаж печатной платы завершен
Завершив распайку всех перемычек припаиваем десятижильный плоский кабель. При пайке кабель следует располагать так как показано на рисунке.
![]() |
Рисунок 11. Распайка сигнальных цепей шлейфа
Далее кабель складывается поперек за корпусом микросхемы и подготавливаются проводники, которые должны быть подключены к общему проводу. Подготовка сводится к подгонке длины этих проводников таким образом что бы их можно было припаять к корпусу разъема. После чего они зачищаются, скручиваются, лудятся и припаиваются в одной точке к корпусу как показано на рисунке. На мой взгляд это позволяет отказаться от дополнительного крепления кабеля внутри корпуса.
![]() |
Рисунок 12. Распайка общего провода шлейфа
Установив собранную плату в верхнюю часть корпуса разъема проверяем не забыли ли припаять перемычку с контакта разъема на его корпус (о том как это сделать говорилось выше).
![]() |
Рисунок 13. Распайка перемычки общего провода
Окончательно собираем корпус разъема. Распечатываем этикетку, обклеиваем ее с лицевой стороны скотчем и закрепляем на корпусе в предусмотренном для этого углублении на нем.
![]() |
Рисунок 14. Собираем корпус и клеем этикетку
Ну вот и все. Адаптер для внутрисхемного программирования готов! Что получилось у меня показано на рисунке. У вас должно получиться то же самое, если вы следовали моим указания.
![]() |
Рисунок 15. Адаптер готов
Можно проводить испытания. Подключаем к макетной плате с установленным микроконтроллером, запускаем программу для внутрисхемной прошивки с поддержкой STK200/300 ( например CodeVisionAVR Programmer) и наслаждаемся.
![]() |
Рисунок 16. Проверяем работу
В заключение хотелось сказать пару слов о длине кабеля. В большинстве источников говорится что длина кабеля не должна превышать нескольких десятков сантиметров для обеспечения надежной работы адаптера. Однако практика использования адаптера с двух метровым кабелем, изготовленного по выше описанной технологии, не выявила никаких проблем. Кабель такой длины позволяет удобно располагать программируемое устройство на рабочем столе и отказаться от использования удлинителя параллельного порта компьютера. В последствии приходилось общаться с людьми утверждавшими что успешно использовали подобную конструкцию с кабелем длиной около десяти метров для внутрисхемного программирования по интерфейсу SPI.
Надеюсь, что мои рекомендации окажутся полезными для тех кто решится начать свою работу с микроконтроллерами AVR со сборки адаптера STK200/300.
Файлы к статье:
- Печатная плата в формате Sprint Layout
- Этикетка на корпус в формате Sprint Layout
Кунавин Михаил
г. Волгоград
Оцените статью!