Разведение питания

При конструировании электронных устройств есть ряд особенностей которые явно не видны на схеме и не обнаруживаются в симуляторах, но оказывают активнейшее влияние на работу схемы, провоцирующее плавающие глюки и неполадки.

Хорошим источником приколов может служить земляная шина, будучи проложена без учета ряда особенностей.

Вообще, грамотная разводка это та еще черная магия. Толковых подробных мануалов по сему предмету я не встречал, а все что знаю продукт собственных умозаключений и обрывки толковых мыслей с разных форумов. В общем, если есть что добавить добавляйте.

Гладко было на бумаге, но забыли про овраги
Представим себе схемку, обычная такая схема. Питальник, хороший мощный. Цифровая управляющая логика микроконтроллер, Большой П в смысле потребитель мощная силовая нагрузка. Жрущая, например, 10А. И датчик, который измеряет некоторые параметры Большого П и скармливает контроллеру. Как то так:

Будет работать? По идее должно. Но для того, чтобы оно работало надо это дело воплотить в печатной плате и изготовить. Разводка платы в первом приближении выглядеть может так:

В самом деле, чего мудрить то? Все просто и очевидно. На бумаге, ага. Прикол в том, что дорожки далеко не идеальные и у них тоже есть сопротивление. Небольшое, десятые доли Ома, но есть. Перерисуем первоначальную схему исходя из этого уточнения:

А теперь врубаем наш БОЛЬШОЙ ПЭ. И он вкачивает в нашу, нифига не идеальную, земляную дорогу свои 10А , щедро загребаемые им с 40 вольтового выхода. Мощно подтягивая ближний конец линии к своему питанию.

И на каждом участочке нашей земляной линии высаживается какое-то напряжение. Исходя из закона Ома это будет I*R, при сопротивлении в 0.1 ом и токе в 10А мы имеем 1 вольт. Это на каждом кусочке! Т.е. чем дальше от нашей точки нулевого потенциала (минус питания, куда приходят все токи) тем больше нарастание падения.

И вот смотрим ситуацию на нашей земляной линии образовались падения напряжения и чем дальше от БП, тем они больше суммируются, приближаясь к питанию силового элемента. Да так, что наш контроллер вообще обесточился на его земляном входе оказалось 5 вольт, что дало разность потенциалов между его Vcc, запиатанной от +5 вольт, в 0. А будь ток не 10А, а в два раза больше, то там бы было 10 вольт (-5V разницы) и эффект был бы равносилен переполюсовке, что моментом отправит наш контроллер в ад.

При меньшем токе, мы бы получили снижение питания контроллера со всеми вытекающими последствиями, как то сбои, рассогласование уровней с датчиком, которого накрыло меньше, т.к. он был ближе к земле. Но тоже приятного мало.

Что делать?
Решение очевидное в таких случаях надо просто разнести контура силовой и управляющей части, выделить под мощные токи отдельную дорогу, дабы не делать падение напряжения.

Усе, теперь эти 10А сразу попадут на БП, не создавая нам перекосов в управляющих цепях.

Мины рвутся по углам
С Большим ПЭ ситуация ясна и прозрачна, однако бывают и менее явные случаи. Что у нас может дать бесконечно большой ток на бесконечно малом промежутке времени? Правильно заряжающийся кондер.
А поможет ему в этом заряженный кондер на выходе блока питания, одолжив ему энергии для диверсии он, в отличии от Блока Питания, имеет предельно низкое внутреннее сопротивление и способен такой ток выдать.

Конечно длительность такого процесса будет микроскопической, в зависимости от размеров заряжаемой емкости. Но так и контроллер у нас далеко не тормоз ему этого дрыга хватит вполне чтобы ребутнуться или зависнуть.

А если возникнет импульсный бросок напряжения между выводами кварца, то контроллер может посчитать это за ложный тактовый импульс. И если он будет короче предельно допустимого тактового импульса, то контроллер запросто может повиснуть или заглючить какая либо из цепей не успеет правильно обработать и привет. И фиг ты такое отловишь, а без осциллографа просто труба.

В общем, критические земляные цепи, вроде кварцев, должны быть разведены тупиковыми ветвями, не допускающими сквозных токов.

Где прячутся конденсаторы
А они повсюду, где то больше, где то меньше, но емкости присутствуют повсеместно, начиная от емкостей между дорожками и кончая затворами полевых транзисторов. Переключение этих транзисторов это банальный перезаряд этих емкостей.

А учитывая, что все современные микроконтроллеры построены на сотнях тысяч полевых транзисторах и у каждого из которых есть своя затворная емкость. Она может и незначительная, но их там дофига, и тикают они синхронно.

Поэтому-то на шины питания микросхем рекомендуют ставить керамические кондеры, причем максимально близко к микрухам. Они служат для подпитки энергией при перезарядке множества паразитных емкостей транзисторов внутри контроллеров, чтобы эти броски тока не лезли наружу, не загаживали питание.
А шины питания и, особенно, земли стараются делать максимально толстыми для снижения сопротивления, и стараются разводить их звездочкой. Дабы не допускать замкнутых контуров, чтобы токи разных потребителей, особенно мощных или с повышенным количеством перезаряжающихся емкостей, не шныряли по чужим землям.

Плюс не стоит выпускать из виду и такой момент как электромагнитные наводки. Мощная силовая дорога, идущая по плате круголями, может послужить зверской катушкой индуктивности и навести кучу мусора на информационные цепи. Пример я уже приводил, причем там была слаботочка.

В аналоговых цепях, особенно микровольтных и слаботочных, это все еще жестче. Т.к. там малейший цифровой мусор в шине питания/земли может быть соразмерен полезному сигналу, сводя на нет все попытки его обработать. Поэтому там цепи прячут под экранирующие колпаки защита от электромагнитных наводок и размещают подальше от цифровых защита от паразитных емкостей между цифровыми и аналоговыми сигналами.

5 1 голос

Оцените статью!

guest
0 Комментарий
Межтекстовые Отзывы
Посмотреть все комментарии